

SAS Formats: Uses and Abuses
Carry W. Croghan, US-EPA, Research Triangle Park, NC

ABSTRACT
SAS formats are a very powerful tool. They allow you to display
the data in a more readable manner without modifying it. Formats
can also be used to group data into categories for use in various
procedures like PROC FREQ, PROC TTEST, and PROC MEANS
(as a class variable). As with many powerful tools, there are
some ‘gotchas’ to be aware of. Formats can crash a program
without specific options. They can produce misleading
information; this is especially true for picture format. There are
many aspects of formats to consider, including ‘built-in’ or ‘user
defined’ formats. A format may be temporary or permanent. The
PUT and INPUT functions can be used to generate new variables
using formats. If you have several format libraries, managing the
formats can be difficult. The SAS dictionary tables are useful in
managing the different formats. Code and output examples
demonstrate the various uses and potential abuses of SAS
formats

INTRODUCTION
This paper is an introduction to SAS formats and the related
informats. Included is information on what a format is and why
they are useful. There are examples of how to use and create
formats. In addition, some potential errors are discussed.

WHY USE FORMATS?
Numeric values are efficient to store, especially integers.
Inputting data using only the numeric key pad is quicker than
alternating between number and letters. So data are usually
collected and stored as numeric values. If you are very familiar
with the data, understanding the coded values is not a problem.
However, for those individuals that are not as closely involved
with the data, the coded values can be incomprehensible. You
could always hand out a code sheet with the data, but the reader
may get a little annoyed at flipping back and forth from the data
and the code sheet. SAS provided a better solution -- formats.
Formats display the data in a more readable manner without
modifying the data, making them a powerful tool.
SAS dates are an example of a type of data that is very difficult to
interpret. SAS dates are integer values that represent the number
of days since 01Jan1960. Although very efficient in storage,
these values can be hard to interpret. SAS recognized this and
provides a multitude of formats that are specific for dates,
including: mmddyy10., date7., monyy5., and weekday1.
Date=01Jan1960 is easier to understand than date=0.

ANATOMY OF A FORMAT
Let’s look at the anatomy of a format. A name of a format has 4
parts: name, total width, dot, and number decimal locations. The
name consists of 0 to 8 alphanumeric characters and cannot start
or end with a numeric value. The width of the value is needed
only if it can have multiple lengths. For example the ‘datew.’
format can have the widths 5, 7, or 9. The value date=0 formatted
as ‘date5.’ is 01Jan, ‘date7.’ is 01Jan60, and ‘date9.’ is
01Jan1960. The dot is necessary for SAS to know that what you
are referring to is a format and not a variable. The last part is the
number of decimal places to be printed. For example, ‘f8.2’ is a
numeric format with a width of 8 and 2 decimal places. It can
accommodate values between -9999.99 to 99999.99. Note that
both the minus sign and the decimal point take a space and must
be accounted for in the width.

SAS has 3 kinds of formats: character, numeric, and datetime. A
character format is used to write character data values that are
determined by a character variable. A numeric format is used to
write a numeric value determined by a numeric variable. A
datetime format is used to write a value that represents the date,
time, or datetimes stored in a numeric variable.

These are examples of SAS ‘built-in’ character formats:

Format Description & example
$CHARw. Writes the character variable limiting the length to

the specified width.
 Text=”abcdes”;

Format text $char4.;
abcd

$HEXw. Writes the character as hexadecimal
 Text=”a”;

Format text $HEX4.;
61

$REVERSw. Writes the character in reverse order and left aligns.
 Text=”abcdes”;

Format text $revers8.;
edcba

These are examples of SAS ‘built-in’ datetime formats:

Format Description & example
DATEw. Writes the date in the form of ddmonyy or

ddmonyyyy
 tDate= 15970;

format tDate date7.;
22SEP03

MMDDYYxw. Writes the date in the form of mmddyy with
specified separator.

 tDate= 15970;
format tDate mmddyyc8.;

09:22:03

JULIANw. Writes the date as the Julian date in the form
yyddd or yyyyddd

 tDate= 15970;
format tDate julian7.;

2003265

YYQxw. Write the date as a year and quarter with the
specified separator

 tDate= 15970;
format tDate yyqs6.;

2003/3

These are examples of SAS ‘built-in’ numeric formats:

Format Description & example
BESTw. SAS chooses the best notation for each numeric value
 X= 29348 ;

X= 0.0423 ;
X= 23 ;
X= 2003 ;
format x best5.;

29348
0.042
 23
 2003

COMMAw.d Writes the numeric values with commas and decimal
points

X= 29348 ;
X= 0.0423 ;
X= 23 ;
X= 2003 ;
format x comma13.4;

29,348.0000
 0.0423
 23.0000
 2,003.0000

Format Description & example
DOLLARw.d Writes the numeric values with dollar signs, commas,

and decimal points.
 X= 29348 ;

X= 0.0423 ;
X= 23 ;
X= 2003 ;
format x dollar15.2;

 $29,348.00
 $0.04
 $23.00
 $2,003.00

PERCENTw.d Writes the numeric values as percentages (note it
does both the multiplying by 100 as well as adding the
% sign)

 X= 29348 ;
X= 0.0423 ;
X= 23 ;
X= 2003 ;
format x percent12.5;

 2934800.0%
 4.23000%
 2300.0000%
 200300.00%

ROMANw. Writes the numeric values as Roman numerals.
(note that fractions as well as 0 have no
representation)

 X= 29348 ;
X= 0.0423 ;
X= 23 ;
X= 2003 ;
format x roman5.;

 0
 XXIII
 MMIII

WORDSw. Writes the numeric values as words.
 X= 29348 ;

X= 0.0423 ;
X= 23 ;
X= 2003 ;
format x words50.;

twenty-nine thousand
three hundred forty-eight
 zero and four hundredths
 twenty-three
 two thousand three

SO WHAT IS AN INFORMAT
Informats are similar to formats but instead of specifying how to
write data out they specify how to read data in. The application of
informats is more limited than formats. Informats are used in
input statements and functions. The structure of an informat is
the same as for a format but the type specifies the output not the
input. You cannot use informats and formats interchangeably but
you can have formats and informats named the same. SAS has a
‘built-in’ format and informat called JULIAN. SAS recognizes the
two things as different. However, don’t assume that if there is a
format and related informat exists, SAS will complain if it cannot
find the format or informat it is looking for. Having informats and
formats with the same name can be very confusing; I recommend
that you keep the names different.

OTHER USES OF FORMATS
GROUPING
Besides making your data more readable, formats can be used to
group data into categories for use in various procedures like
PROC FREQ, PROC TTEST, and PROC MEANS (as a class
variable). For example, you could get the mean sales values by
quarter if you had the date of the sales. If your data look like this.

Obs storeid totsale saledate
 1 1 220 15717
 2 1 257 15807
 3 1 258 15534
 4 1 295 15614
…

then,
proc means data=sales maxdec=2;
 class saledate;
 var totsale;
 format saledate yyqn5.;
run;

produces the following output:

Analysis Variable : totsale
 N

saledate Obs N Mean Std
Dev

Minimum Maximum

20023 16 16 299.00 206.79 58.00 759.00
20024 12 12 353.67 252.81 123.00 895.00
20031 16 16 443.75 272.74 184.00 947.00
20032 16 16 426.75 261.74 107.00 907.00

The date data are still stored at the day level. The grouping has
been accomplished by the use of the format.

Similarly, formats can be used to group the data in a PROC
FREQ. Looking at the same dataset,

proc freq data=sales;
 table saledate;
 format saledate yyqn5.;
run;

produces the following output:

The FREQ Procedure

 Cumulative Cumulative
saledate Frequency Percent Frequency Percent

20023 16 26.67 16 26.67
20024 12 20.00 28 46.67
20031 16 26.67 44 73.33
20032 16 26.67 60 100.00

You can even group the data for a t-test using a format. To test
for any significant change from 2002 to 2003, using a t-test, the
code would be

proc ttest data=sales;
 class saledate;
 format saledate year4.;
 var totsale;
run;

which produces the following output:

The TTEST Procedure

Statistics

 Lower
CL

 Upper
CL

Lower
CL

Variable saledate N Mean Mean Mean StdDev

totsale 2002 28 235.24 322.43 409.61 177.77
totsale 2003 32 340.39 435.25 530.11 210.92
totsale Diff(1-2) -240.3 -112.8 14.62 208.27
…

T-Tests

Variable Method Variances DF tValue Pr>|t|

totsale Pooled Equal 58 -1.77 0.0816
totsale Satterthwaite Unequal 58 -1.79 0.0785

All these procedures used formatted data to combine data. The
data were not modified. Also, there were no additional variables
produced. Once you start generating your own formats, you can
combine your data in a variety of ways. I usually create a format I
call ‘missing.’. Using my ‘missing.’ to format one of the key
variables, I can test if those that do not answer that question are
significantly different from the rest of the study population on the
questions they do answer using a t-test.

If I want to create a categorical variable, I first format the variable
into the categories. Then using PROC FREQ, I check that I have
made good cut points on the distribution.
There are additional procedures for which formats can be used to
group the data. Take a look at which procedures have class or by
statements as good places to do this type of grouping using a
format.

CREATING NEW VARIABLES
The PUT and INPUT functions can be used to generate new
variables using formats. The PUT and INPUT functions should
not be confused with the PUT and INPUT statements. The
statements are methods of dealing with lines of data. The PUT
statement is for outputting lines of data and the INPUT statement
is for inputting lines of data. The PUT and INPUT functions are
used to create new variables based on a value and a structure
definition given by a format or informat.
The PUT function always results in a character variable. The
anatomy is either varname = put(character_value,
$character_format.) or varname=put(numeric_value,
numeric_format.). The format and value must match data type.
The value can be a constant, expression, or variable. For
example, if a dataset has the variable ‘id’ coded as a numeric
variable and you want to create a new id variable that is a
character with leading zeros, the code would be:

 new_id = put(id,z4.);.

Here is an example of how the data would look:

ID NEW_ID
1 0001
10 0010
203 0203
397 0397

The type of variable produced by an INPUT function depends
upon the type of the informat specified. The anatomy is varname
= INPUT(value, $informat.) or varname = INPUT(value, informat.).
For example, if the date information was stored in the dataset as a
character variable in the form mm/dd/yy, to convert this to a SAS
date is easy using the INPUT function and the informat mmddyy8:
ndate = INPUT(cdate,mmddyy8.);. Since the informat mmddyy8.
is a numeric informat, the type of ndate is numeric. The value for
INPUT can also be a constant, expression, or variable.

SHOULD IT BE PERMANENT
You don’t have to create a new variable to get a variable that is
always displayed in a formatted manner. You can make a
permanent format association for the variable. If a format is
assigned in a data step or a procedure that modifies the data

such as proc datasets or proc sql, then the association is
permanent. (At least it is permanent until you change it either
temporarily or permanently.) A format that is assigned in a
procedure that does not modify the data is temporary. As soon as
the procedure is completed the link between the variable and the
format is gone.

The easiest way to find out what, if any, formats are assigned to a
variable is by using a proc contents. If any formats are
associated with your dataset, they will be listed.

You can also check a multitude of datasets at once by using the
dictionary files. SASHELP.VCOLUMN has information on both
format and informats that are assigned to a variable. Either print
or select the libname and memname you are interested in.

HOW TO MAKE YOUR OWN FORMATS
 Although SAS provides many ‘built-in’ formats, you will at some
point want to make your own. This is done within the format
procedure. There are three general types of formats you can
make: value, invalue and picture. Value format is for decoding
data. Invalue is for reading in coded values. Picture format
defines a template for displaying numeric values.

VALUE
Value format is the type that I use most. It links a range, or set of
values to a label. The data type, character or numeric, for the
range must match the data type for the format. For example:

proc format;
value sex 1 = ‘Female’

 2 = ‘Male’
 other=’Error’;
 value $ ans a = ‘Always’
 b = ‘Sometimes’
 c = ‘Never’;
 value agegrp low-<13 = ‘Pre-teen’
 13-19 = ‘Teenager’
 20-30 = ‘Young adult’
 30-60 = ‘Adult’
 61-high = ‘Senior’;

INVALUE
If the variable comes in as a character and you want to translate it
to numeric you can use an invalue format type. This creates an
informat. Remember the data type is what the output is and not
what the input is.

proc format;
 invalue sex ‘F’ = 1
 ‘M’ = 2
 other = .;
run;

Then you use the informat sex. as a parameter in an INPUT
function (gender = INPUT(sex, sex.);), instead of using a series of
if-then-else statements for the re-coding. For a variable with only
two possible values, this is not much of a time savings. If you
have a larger set of codes, the format already exists, or you have
a dataset with the code and decodes in it, then this technique can
save a lot of time and possible coding errors.

PICTURE
A picture format is a template for printing your numeric values.
Like the value and invalue statements, you can specify ranges
that you wish different templates to be applied. For example:

proc format;
picture

low-<10000 = ‘Less than 10k’ (noedit)
10000-high = ‘09.99M’ (mult = 0.0001
round);

run;

If the value is less than 10,000 then the comment ‘Less than 10k’
is printed. The noedit option specifies that the numbers in the
label are to be printed as they are. For those values greater than
or equal to 10,000, the value is multiplied by 0.0001 then is
printed out. The zeros are place holders that are only used if the
value is that large. Nines indicate places that either a zero or the
value will be placed. Therefore,

If x is This is what is printed
69767792.18 69.77M

35314.24 0.04M
904.48 Less than 10k

1579099.60 1.58M
-4683825.42 Less than 10k

Note that negative values also get the note of ‘Less than 10K’.
You will have to make a new range to accommodate the negative
values if you want them treated differently.

OPTIONS
There are many different options you can use in a format
procedure. The following options are common to INVALUE,
VALUE, and PICTURE.

Options Description Default value
DEFAULT=length Specifies the default

length for the labels
for the format.

Length of the longest
label.

FUZZ=fuzz-factor If a number does not
exactly match the
range, but is within
fuzz-factor, then it is
considered to be in
the range.

1E-12 for numeric, 0
for character

MIN=length Specifies the
minimum length of a
label.

1

MAX=length Specifies the
maximum length of
a label.

40

Each type of format has its own set of options. Check the SAS
procedure guide for details on the other options.

HOW TO DO MORE WITH FORMATS
In addition to the format level options, there are a many options
that relate the format procedure.

HOW TO GENERATE A FORMAT FROM DATA
You can create a format from a dataset using the CNTLIN option.
For example, if you have a dataset with the following structure

value (a character variable) label
42101 NO2
42601 NO
42602 NOX
42603 CO
…
and you want to generate a format using the value as the range
and label as the label. You first need to create a couple of
additional variables that contain the type of the format and the
name of the format (e.g., call it $chemnme). (Note that the same
rules that apply to the name of a format also apply here.) The
variable ‘value’ needs to be renamed to ‘start’. Save this new
dataset as chemname.

data chemname;
 retain fmtname "$chemnme" type "c";
 set oldfile;
 rename value = start;
run;

The new dataset would look like

fmtname type start label
$chemnme c 42101 NO2
$chemnme c 42601 NO
$chemnme c 42602 NOX
$chemnme c 42603 CO
…

Once you have a dataset with the necessary variables (named as
SAS wants), then use

proc format cntlin= chemname;
run;

You have generated a format without having to do all the typing.

HOW TO GENERATE DATA FROM FORMAT
Generating data from a format is even easier. The CNTLOUT
option creates a dataset with all the information for all the formats
within a format catalog that you specify.

proc format cntlout=temp2;
run;

This produces a dataset called TEMP2 that has the following
information:

Obs FMTNAME START END LABEL
1 AGEGRP LOW 13 Pre-teen
2 AGEGRP 13 19 Teenager
3 AGEGRP 20 30 Young

adult
4 AGEGRP 30 60 Adult
5 AGEGRP 61 HIGH Senior
6 SEX 1 1 Female
7 SEX 2 2 Male
8 SEX **OTHER** **OTHER** Error
9 ANS a a Always
10 ANS b b Sometimes

11 ANS c c Never
12 SEX F F 1
13 SEX M M 2
14 SEX **OTHER** **OTHER** .

Obs MIN MAX DEFAULT LENGTH FUZZ TYPE
1 1 40 11 11 1E-12 N
2 1 40 11 11 1E-12 N
3 1 40 11 11 1E-12 N
4 1 40 11 11 1E-12 N
5 1 40 11 11 1E-12 N
6 1 40 6 6 1E-12 N
7 1 40 6 6 1E-12 N
8 1 40 6 6 1E-12 N
9 1 40 9 9 0 C
10 1 40 9 9 0 C
11 1 40 9 9 0 C
12 1 40 1 1 0 I
13 1 40 1 1 0 I
14 1 40 1 1 0 I

Note that I have two FMTNAME = ‘SEX’ but one is an informat
and the other is a format. You can tell which is which by looking
at the variable TYPE.

The complete list of variables in a dataset generated by
CNTLOUT is:

Variable SAS label
DATATYPE Date/time/datetime?
DECSEP Decimal separator
DEFAULT Default length
DIG3SEP Three-digit separator
EEXCL End exclusion
END Ending value for format
FILL Fill character
FMTNAME Format name
FUZZ Fuzz value
HLO Additional information
LABEL Format value label
LANGUAGE Language for date

strings
LENGTH Format length
MAX Maximum length
MIN Minimum length
MULT Multiplier
NOEDIT Is picture string noedit?
PREFIX Prefix characters
SEXCL Start exclusion
START Starting value for format
TYPE Type of format

These are all the variables that you can specify in a CNTLIN
dataset.

The EXCLUDE and SELECT statements can be used to limit or
specify what formats are outputted to the dataset for the
CNTLOUT output.

HOW TO STORE YOUR FORMATS
You don’t want to have to re-create your formats over and over
again. Also if several programmers are accessing the data, a
central location for the formats not only saves time but limits
errors as well. You would want to store your formats in a format

catalog.

To create a format library, you use a special libname- LIBRARY.

libname library “C:\study formats”;

Then in the proc format statement add the option
library=LIBRARY. All the formats that you create within that
procedure will be saved to a format catalog in the directory that
you have specified.

As long as you include that libname statement in your later
programs, SAS will find your user defined formats. SAS
automatically searches WORK library as well as LIBRARY library
for formats, in that order.

If you want to change the order of the search or have more than
one directory that contains format catalog, use the option
FMTSEARCH=, to specify the additional directories and search
order.

For example, let’s say there are four levels of formats. There are
project and section level formats in addition to the study formats
and those defined within the program stored on WORK. You want
to search the program defined formats first, followed by the study,
project and finally, section formats. FMTSEARCH = (PROJECT,
SECTION) would search in that order since WORK and LIBRARY
are not specified their order does not change. If, however, you
want to search in the exact reverse order, then specify the
FMTSEARCH = (SECTION, PROJECT, LIBRARY, WORK).

If you have forgotten exactly which formats are in which libraries
(which is easy to do if there are many libraries), you can use the
fmtlib option in a proc format to output information on the formats
and informats that are contained in a library. Then define the
LIBRARY and then use the fmtlib option in PROC FORMAT.

libname LIBRARY “c:\a directory with a format
catalog in it.”;

proc format lib=library fmtlib;
run;

produces a nice table for each format, including details on each
level as well as details on the options for the format.

WARNINGS AND PROBLEMS
All powerful tools can be dangerous or just somewhat annoying -
formats are no exception. You don’t have to wear safety glasses
but you need to always be aware of the pitfalls.
One annoying aspect of formats is that they can crash a perfectly
good program. This occurs when SAS cannot not locate a
specified format for the dataset. SAS gives you an error message
and terminates the program. This usually happens when
someone sends you data in which they have permanently
associated some ‘user-defined’ formats and they haven’t given
the formats to you. (Also, when I forget to specify the correct
library where I have stored my own user defined formats. But you
won’t do that). The option NOFORMATERROR will allow your
program to run. This option just suppresses the error code that
terminates the SAS program. It does not modify the data and the
format associations. It is a stop gap solution. You should try to
get or generate the formats that you are missing. If that is not
possible, you can also unassign all formats within a data step with
the code: format _all_;. However, you will lose all the information
that the formats contained.

Another, and more insidious, problem with formats is that some
times they give you misleading information. This happens when

you have not specified the correct format and the data do not fit
into the structure that you have given. Picture formats are
specifically dangerous. However, they are not the only culprits.
The other day, I was reading in some data and needed to change
the variable from character to numeric. I knew that the maximum
size was 999.99 and I wanted to make sure I did limit the
decimals to two places, so I used input(x,6.2). Looking at the
data, I discovered that for those values that did not have the
decimal values specified, I got incorrect data. For example,
instead of getting 35.00 for 35, I got 0.35. So I used BEST6. and
got what I was looking for. Always check the coded data against
the decoded and make sure you have what you think you should
have. If you are generating a new variable, compare the new to
the old. If you are using a format to group data, make sure that
the number in each group is what you were expecting.

If you are delivering a dataset to someone else, be sure there are
no ‘user-defined’ formats associated with the dataset or else
provide the format code to the data recipient. Format catalogs
are hard to transfer. The code or a CNTLOUT dataset is a better
way to send formats to someone else.

CONCLUSION
Hopefully you have learned something new about formats. I find
them to be very useful tools. They can be both a time and space
saver. They can make your data more readable. They can group
your data for analysis. They can be used to generate new
variables. The format procedure allows you to create ‘user-
defined’ formats, generate dataset from formats or generate
formats from datasets. You can store your formats in a format
catalog. They cause problems if not properly managed.
However, SAS provides many tools for handling formats, e.g.,
specifying search order, NOFORMATERROR, and FMTLIB.
There are a lot of details that I could not go into here. Dig into the
SAS manuals and do some additional reading on formats.

REFERENCES
Aster, Rick. Professional SAS Programmer’s Pocket Reference.
3rd edition. Breakfast Communications Corp., Paoli, PA.

Cody, Ronald and Smith, Jeffrey. Applied Statistics and the SAS
Programming Language. 4th Edition. Prentice Hall, Upper Saddle
River, NJ.

SAS Procedures Guide, Version 8. SAS Publishing, Cary, NC.

SAS Language Reference: Concepts, Version 8. SAS Publishing,
Cary, NC.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Author Name: Carry W. Croghan
 Company: US-EPA
 Address: HEASD (MD E205-1)
 City state ZIP: RTP, NC 27709
 Work Phone: (919) 541-3184
 Fax: (919) 541-0239
 Email: croghan.carry@epa.gov

This paper has been reviewed in accordance with the United
States Environmental Protection Agency’s peer and administrative
review policies and approved for presentation and publication.
SAS and all other SAS Institute Inc. product or service names are

registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Mention of
trade names or commercial products does not constitute
endorsement or recommendation for use.

